lunes, 28 de abril de 2008

Evolución del Telefono


En 1854, el inventor francés Charles Bourseul planteó la posibilidad de utilizar las vibraciones causadas por la voz sobre un disco flexible o diafragma, con el fin de activar y desactivar un circuito eléctrico y producir unas vibraciones similares en un diafragma situado en un lugar remoto, que reproduciría el sonido original. Algunos años más tarde, el físico alemán Johann Philip Reis inventó un instrumento que transmitía notas musicales, pero no era capaz de reproducir la voz humana. En 1877, tras haber descubierto que para transmitir la voz sólo se podía utilizar corriente continua, el inventor estadounidense de origen inglés Alexander Graham Bell construyó el primer teléfono capaz de transmitir y recibir voz humana con toda su calidad y su timbre.
Teléfono magnético de Bell
El conjunto básico del invento de Bell estaba formado por un emisor, un receptor y un único cable de conexión. El emisor y el receptor eran idénticos y contenían un diafragma metálico flexible y un imán con forma de herradura dentro de una bobina. Las ondas sonoras que incidían sobre el diafragma lo hacían vibrar dentro del campo del imán. Esta vibración inducía una corriente eléctrica en la bobina, que variaba según las vibraciones del diafragma. La corriente viajaba por el cable hasta el receptor, donde generaba fluctuaciones de la intensidad del campo magnético de éste, haciendo que su diafragma vibrase y reprodujese el sonido original.
En los receptores de los teléfonos modernos, el imán es plano como una moneda y el campo magnético que actúa sobre el diafragma de hierro es de mayor intensidad y homogeneidad. Los transmisores modernos llevan un diafragma muy fino montado debajo de un rejilla perforada. En el centro del diafragma hay un pequeño receptáculo relleno de gránulos de carbono. Las ondas sonoras que atraviesan la rejilla provocan un vaivén del receptáculo. En el movimiento descendente, los gránulos quedan compactados y producen un aumento de la corriente que circula por el transmisor.( sustitucion)
Partes del aparato telefónico
El aparato telefónico consta de un transmisor, un receptor, un dispositivo marcador, una alarma acústica y un circuito supresor de efectos locales. Si se trata de un aparato de dos piezas, el transmisor y el receptor van montados en el auricular, el timbre se halla en la base y el elemento de marcado y el circuito supresor de efectos locales pueden estar en cualquiera de las dos partes, pero, por lo general, van juntos.




Los teléfonos más complejos pueden llevar un micrófono y un altavoz en la pieza base, aparte del transmisor y el receptor en el auricular. En los teléfonos portátiles, el cable del auricular se sustituye por un enlace de radio entre el auricular y la base, aunque sigue teniendo un cable para la línea. Los teléfonos celulares suelen ser de una sola pieza, y sus componentes en miniatura permiten combinar la base y el auricular en un elemento manual que se comunica con una estación remota de radio. No precisan línea ni cables para el auricular. (integracion)
Los teléfonos antiguos usaban un único dispositivo como transmisor y receptor. Sus componentes básicos eran un imán permanente con un cable enrollado que lo convertía en electroimán y un fino diafragma de tela y metal sometido a la fuerza de atracción del imán. La fuerza de la voz, en cuanto ondas de sonido, provocaban un movimiento del diafragma, que a su vez generaba una minúscula corriente alterna en los cables del electroimán. Estos equipos eran capaces de reproducir la voz, aunque tan débilmente que eran poco más que un juguete.
La invención del transmisor telefónico de carbono por Emile Berliner constituye la clave en la aparición del teléfono útil. Consta de unos gránulos de carbono colocados entre unas láminas metálicas denominadas electrodos, una de las cuales es el diafragma, que transmite variaciones de presión a dichos gránulos. Los electrodos conducen la electricidad que circula a través del carbono. Las variaciones de presión originan a su vez una variación de la resistencia eléctrica del carbono. A través de la línea se aplica una corriente continua a los electrodos, y la corriente continua resultante también varía. La fluctuación de dicha corriente a través del transmisor de carbono se traduce en una mayor potencia que la inherente a la onda sonora original. Este efecto se denomina amplificación, y tiene una importancia crucial. Un transmisor electromagnético sólo es capaz de convertir energía, y siempre producirá una energía eléctrica menor que la que contiene una onda sonora.
El equivalente eléctrico del imán permanente es una sustancia plástica denominada electreto. Al igual que un imán permanente produce un campo magnético permanente en el espacio, un electreto genera un campo eléctrico permanente en el espacio. Tal como un conductor eléctrico que se mueve en el seno de un campo magnético induce una corriente, el movimiento de un electrodo dentro de un campo eléctrico puede producir una modificación del voltaje entre un electrodo móvil y otro estacionario en la parte opuesta del electreto. Aunque este efecto se conocía de antiguo, fue sólo una curiosidad de laboratorio hasta la aparición de materiales capaces de conservar una carga electrostática durante años. Los transmisores telefónicos se basan actualmente en este efecto, en vez de en la resistencia sensible a la presión de los gránulos de carbono, ya que se consigue con un micrófono de electretos muy pequeño, ligero y económico. Los micrófonos de electretos se basan en los transistores para la amplificación requerida.
Dado que el transmisor de carbono no resulta práctico a la hora de convertir energía eléctrica en presión sonora, los teléfonos fueron evolucionando hacia receptores separados de los transmisores. Esta disposición permite colocar el transmisor cerca de los labios para recoger el máximo de energía sonora, y el receptor en el auricular, lo cual elimina los molestos ruidos de fondo. El receptor sigue siendo un imán permanente con un arrollamiento de hilo conductor, pero ahora lleva un diafragma de aluminio sujeto a una pieza metálica. Los detalles del diseño han experimentado enormes mejoras, pero el concepto original continúa permitiendo equipos sólidos y eficaces.
La alarma acústica de los teléfonos se suele denominar timbre, referencia al hecho de que durante la mayor parte de la historia de este equipo la función de alarma la proporcionaba un timbre eléctrico. La creación de un sustituto electrónico para el timbre, capaz de generar un sonido agradable a la vez que distintivo a un coste razonable, constituyó una tarea sorprendentemente ardua. Para muchas personas, el sonido del timbre sigue siendo preferible al de un zumbador electrónico. Sin embargo, dado que el timbre mecánico exige un cierto volumen físico para resultar eficaz, la tendencia hacia equipos cada vez menores impone el uso de alarmas electrónicas en la mayoría de los teléfonos. La sustitución progresiva del timbre permitirá asimismo cambiar, en un futuro próximo, el método actual de activación de la alarma —corriente alterna de 90 voltios (V) y 20 hercios (Hz) a la línea— por técnicas de voltajes menores, más compatibles con los teléfonos transistorizados. Algo similar se está produciendo con el esquema de marcado de los teléfonos.
El marcado telefónico ya ha sufrido toda una evolución a lo largo de su historia. Existen dos formas de marcado, el de pulso y el de multifrecuencia o tono.
El disco de marcado tiene un diseño mecánico muy ingenioso; consta de los números 1 al 9 seguidos del 0, colocados en círculo debajo de los agujeros de un disco móvil y perforado. Se coloca el dedo en el agujero correspondiente al número elegido y se hace girar el disco en el sentido de las agujas del reloj hasta alcanzar el tope y a continuación se suelta el disco. Un muelle obliga al disco a volver a su posición inicial y, al mismo tiempo que gira, abre un conmutador eléctrico tantas veces como gire el disco, para marcar el número elegido; en el caso del 0 se efectúan 10 aperturas, ya que es el último número del disco. El resultado es una serie de pulsos de llamada en la corriente eléctrica que circula entre el aparato telefónico y la centralita. Cada pulso tiene una amplitud igual al voltaje suministrado por la pila, generalmente 50 V, y dura unos 45 ms (milisegundos, milésimas de segundo). Los equipos de la centralita cuentan estos pulsos y determinan el número que se desea marcar.
Los pulsos eléctricos producidos por el disco giratorio resultan idóneos para el control de los equipos de conmutación paso-a-paso de las primeras centrales de conmutación automáticas. Sin embargo, el marcado mecánico constituye una de las fuentes principales de costes de mantenimiento, y el proceso de marcado por disco resulta lento, sobre todo en el caso de números largos. La disponibilidad de la amplificación barata y fiable que trajo el transistor aconsejó el diseño de un sistema de marcado basado en la transmisión de unos tonos de potencia bastante pequeña, en vez de los pulsos de marcado de gran potencia. Cada botón de un teclado de multifrecuencia controla el envío de una pareja de tonos. Se utiliza un esquema de codificación ‘2 de 7’ en el que el primer tono corresponde a la fila de una matriz normal de 12 botones y el segundo a la columna (4 filas más 3 columnas necesitan 7 tonos).
Actualmente, la mayoría de los teléfonos llevan botones en vez de disco de marcado. Dado que el sistema de tonos se comercializaba opcionalmente con un coste adicional, en las centrales se siguen recibiendo pulsos o multitonos. Como un usuario que compra un equipo puede disponer de una línea que no admite señales de multifrecuencia, los teléfonos de botones disponen generalmente de un conmutador que permite seleccionar el envío de pulsos o tonos.
Hay un elemento funcional importante del teléfono que resulta invisible para el usuario: el circuito supresor de efectos locales. Las personas controlan el tono de voz al hablar y ajustan en consonancia el volumen, fenómeno que se denomina ‘efecto local’. En los primeros teléfonos, el receptor y el transmisor del equipo iban conectados directamente entre sí y a la línea. Esto hacía que el usuario oyera su propia voz a través del receptor con mucha más intensidad que cuando no lo tenía pegado a la oreja. El sonido era mucho más fuerte que el normal porque el micrófono de carbono amplifica la energía sonora al mismo tiempo que la convierte de acústica a eléctrica. Además de resultar desagradable, esto obligaba al usuario a hablar con mayor suavidad, dificultando la escucha por parte del receptor.
El circuito supresor original contenía un transformador junto con otros componentes cuyas características dependían de los parámetros eléctricos de la línea telefónica. El receptor y el transmisor iban conectados a diferentes ‘puertos del circuito’ (en este caso, diferentes arrollamientos del transformador), no entre sí. El circuito supresor transfiere energía del transmisor a la línea (aunque parte también a otros componentes), sin que nada pase al receptor. Así se elimina la sensación de
que uno grita en su propia oreja.
Circuitos y centrales
La llamada telefónica se inicia en la persona que levanta el auricular y espera el tono de llamada. Esto provoca el cierre de un conmutador eléctrico. El cierre de dicho conmutador activa el flujo de una corriente eléctrica por la línea de la persona que efectúa la llamada, entre la ubicación de ésta y el edificio que alberga la centralita automática, que forma parte del sistema de conmutación. Se trata de una corriente continua que no cambia su sentido de flujo, aun cuando pueda hacerlo su intensidad o amplitud. La central detecta dicha corriente y devuelve un tono de llamada, una combinación concreta de dos notas para que resulte perfectamente detectable, tanto por los equipos como por las personas.
Una vez escuchado el tono de llamada, la persona teclea una serie de números mediante los botones del auricular o del equipo de base. Esta secuencia es exclusiva de otro abonado, la persona a quien se llama. El equipo de conmutación de la central elimina el tono de llamada de la línea tras recibir el primer número y, una vez recibido el último, determina si el número con el que se quiere contactar pertenece a la misma central o a otra diferente. En el primer caso, se aplican una serie de intervalos de corriente de llamada a la línea. La corriente de llamada es corriente alterna de 20 Hz, que fluye en ambos sentidos 20 veces por segundo. El teléfono del usuario tiene una alarma acústica que responde a la corriente de llamada, normalmente mediante un sonido perceptible. Cuando se responde al teléfono levantando el auricular, comienza a circular una corriente continua por su línea que es detectada por la central. Ésta deja de aplicar la corriente de llamada y establece una conexión entre la persona que llama y la llamada, que es la que permite hablar.
En los primeros teléfonos, la corriente estaba generada por una batería. El circuito local tenía, además de la batería y el transmisor, un arrollamiento de transformador, que recibe el nombre de bobina de inducción; el otro arrollamiento, conectado a la línea, elevaba el voltaje de la onda sonora. Las conexiones entre teléfonos eran de tipo manual, a cargo de operadores que trabajaban en centralitas ubicadas en las oficinas centrales de conmutación.
A medida que se fueron desarrollando los sistemas telefónicos, las conexiones manuales empezaron a resultar demasiado lentas y laboriosas. Esto fue el detonante para la construcción de una serie de dispositivos mecánicos y electrónicos que permitiesen las conexiones automáticas (véase Electrónica). Los teléfonos modernos tienen un dispositivo electrónico que transmite una serie de pulsos sucesivos de corriente o varios tonos audibles correspondientes al número marcado. Los equipos electrónicos de la central de conmutación se encargan de traducir automáticamente la señal y de dirigir la llamada a su destino. (transferencia de funciones)
La tecnología de estado sólido ha permitido que estas centrales puedan procesar las llamadas a una velocidad de una millonésima de segundo, por lo que se pueden procesar simultáneamente grandes cantidades de llamadas. El circuito de entrada convierte, en primer lugar, la voz de quien llama a impulsos digitales. Estos impulsos se transmiten entonces a través de la red mediante sistemas de alta capacidad, que conectan las diferentes llamadas en base a operaciones matemáticas de conmutación computerizadas. Las instrucciones para el sistema se hallan almacenadas en la memoria de una computadora. El mantenimiento de los equipos se ha simplificado gracias a la duplicidad de los componentes. Cuando se produce algún fallo, entra automáticamente en funcionamiento una unidad de reserva para manejar las llamadas. Gracias a estas técnicas, el sistema puede efectuar llamadas rápidas, tanto locales como a larga distancia, determinando con rapidez la ruta más eficaz.
Actualmente, no existe en Estados Unidos ni en Inglaterra ningún teléfono atendido de forma manual. Todos los abonados son atendidos por centrales automáticas. En este tipo de central, las funciones de los operadores humanos las realizan los equipos de conmutación. Un relé de corriente de línea de un circuito ha sustituido el cuadro de conexión manual de luz de la centralita y un conmutador de cruce hace las funciones de los cables. Dado que ahora es cuando los ordenadores empiezan a estar en condiciones de entender comandos hablados, casi un siglo después de las primeras centrales automáticas, se sigue utilizando el visor para mostrar el número marcado. Los registros de entrada almacenan este número y luego lo transmiten a la central de conmutación, que a su vez activa el conmutador de cruce para completar la llamada o dirigirla a un conmutador de mayor nivel para el tratamiento pertinente.
Telefonía transoceánica
El servicio telefonía transoceánica se implantó comercialmente en 1927, pero el problema de la amplificación frenó el tendido de cables telefónicos hasta 1956, año en que entró en servicio el primer cable telefónico submarino transoceánico del mundo, que conectaba Terranova y Escocia.
Telefonía por onda portadora
Utilizando frecuencias superiores al rango de voz, que va desde los 4.000 hasta varios millones de ciclos por segundo, o hercios, se pueden transmitir simultáneamente hasta 13.200 llamadas telefónicas por una misma conducción. Las técnicas de telefonía por onda portadora también se utilizan para enviar mensajes telefónicos a través de las líneas normales de distribución sin interferir con el servicio ordinario. Debido al crecimiento de tamaño y complejidad de los sistemas, se utilizan los amplificadores de estado sólido, denominados repetidores, para amplificar los mensajes a intervalos regulares. (sustitucion)
Cable coaxial
El cable coaxial, que apareció en 1936, utiliza una serie de conductores para soportar un gran número de circuitos. El cable coaxial moderno está fabricado con tubos de cobre de 0,95 cm de diámetro. Cada uno de ellos lleva, justo en el centro del tubo, un hilo fino de cobre sujeto con discos plásticos aislantes separados entre sí unos 2,5 cm. El tubo y el hilo tienen el mismo centro, es decir, son coaxiales. Los tubos de cobre protegen la señal transmitida de posibles interferencias eléctricas y evitan pérdidas de energía por radiación. Un cable, compuesto por 22 tubos coaxiales dispuestos en anillos encastrados en polietileno y plomo, puede transportar simultáneamente 132.000 mensajes.
Fibras ópticas
Los cables coaxiales se están sustituyendo progresivamente por fibras ópticas de vidrio. Los mensajes se codifican digitalmente en impulsos de luz y se transmiten a grandes distancias. Un cable de fibra puede tener hasta 50 pares de ellas, y cada par soporta hasta 4.000 circuitos de voz. El fundamento de la nueva tecnología de fibras ópticas, el láser, aprovecha la región visible del espectro electromagnético, donde las frecuencias son miles de veces superiores a las de la radio y, por consiguiente, pueden transportar un volumen mucho mayor de información. El diodo emisor de luz (LED), un dispositivo más sencillo, puede resultar adecuado para la mayoría de las funciones de transmisión.
Un cable de fibra óptica, el TAT 8, transporta más del doble de circuitos transatlánticos que los existentes en la década de 1980. Formando parte de un sistema que se extiende desde Nueva Jersey hasta Inglaterra y Francia, puede transmitir hasta 50.000 conversaciones a la vez. Este tipo de cables sirven también de canales para la transmisión a alta velocidad de datos informáticos, siendo más segura que la que proporcionan los satélites de comunicaciones (véase Comunicación vía satélite). Otro avance importante en las telecomunicaciones, el TAT 9, un cable de fibra con mucha mayor capacidad, entró en funcionamiento en 1992 y puede transmitir simultáneamente 75.000 llamadas.
Reemisor de microondas
En este método de transmisión, las ondas de radio que se hallan en la banda de frecuencias muy altas, y que se denominan microondas, se remiten de estación a estación. Dado que la transmisión de microondas exige un camino expedito entre estación emisora y receptora, la distancia media entre estaciones repetidoras es de unos 40 Km. Un canal de relé de microondas puede transmitir hasta 600 conversaciones telefónicas.
Telefonía por satélite
En 1969 se completó la primera red telefónica global en base a una serie de satélites en órbitas estacionarias a una distancia de la Tierra de 35.880 Km. Estos satélites van alimentados por células de energía solar. Las llamadas transmitidas desde una antena terrestre se amplifican y se retransmiten a estaciones terrestres remotas. La integración de los satélites y los equipos terrestres permite dirigir llamadas entre diferentes continentes con la misma facilidad que entre lugares muy próximos. Gracias a la digitalización de las transmisiones, los satélites de la serie global Intelsat pueden retransmitir simultáneamente hasta 33.000 llamadas, así como diferentes canales de televisión.
Un único satélite no serviría para realizar una llamada, por ejemplo, entre Nueva York y Hong Kong, pero dos sí. Incluso teniendo en cuenta el coste de un satélite, esta vía resulta más barata de instalar y mantener por canal que la ruta equivalente utilizando cables coaxiales tendidos por el fondo del mar. En consecuencia, para grandes distancias se utilizan en todo lo posible los enlaces por satélite.
Sin embargo, los satélites presentan una desventaja importante. Debido a la gran distancia hasta el satélite y la velocidad limitada de las ondas de radio, hay un retraso apreciable en las respuestas habladas. Por eso, muchas llamadas sólo utilizan el satélite en un sentido de la transmisión (por ejemplo, de Nueva York hacia San Francisco) y un enlace terrestre por microondas o cable coaxial en el otro sentido. Un enlace vía satélite para ambos sentidos resultaría irritante para dos personas conversando entre Nueva York y Hong Kong, ya que apenas podrían efectuar interrupciones, cosa muy frecuente en las conversaciones, y además se verían afectadas por el gran retraso (más de un segundo) en la respuesta de la otra persona.
La mayoría de las grandes ciudades están hoy enlazadas por una combinación de conexiones por microondas, cable coaxial, fibra óptica y satélites. La capacidad de cada uno de los sistemas depende de su antigüedad y el territorio cubierto (los cables submarinos están diseñados de forma muy conservadora y tienen menor capacidad que los cables de superficie), pero, en general, se pueden clasificar de la siguiente forma: la digitalización simple a través de un par paralelo proporciona decenas de circuitos por par; la coaxial permite cientos de circuitos por par y miles por cable; las microondas y los satélites dan miles de circuitos por enlace y la fibra óptica permite hasta decenas de miles de circuitos por fibra. La capacidad de cada tipo de sistema ha ido aumentando notablemente desde su aparición debido a la continua mejora de la ingeniería.
Teléfonos y radiodifusión
Los equipos de telefonía de larga distancia pueden transportar programas de radio y televisión a través de grandes distancias hasta muchas estaciones dispersas para su difusión simultánea. En algunos casos, la parte de audio de los programas de televisión se puede transmitir mediante circuitos de cables a frecuencias audio o a las frecuencias de portadora utilizadas para transmitir las conversaciones telefónicas. Las imágenes de televisión se transmiten por medio de cables coaxiales, microondas y circuitos de satélites.

lunes, 14 de abril de 2008

telefono: su historia

Evolución del teléfono
En 1854, el inventor francés Charles Bourseul planteó la posibilidad de utilizar las vibraciones causadas por la voz sobre un disco flexible o diafragma, con el fin de activar y desactivar un circuito eléctrico y producir unas vibraciones similares en un diafragma situado en un lugar remoto, que reproduciría el sonido original. Algunos años más tarde, el físico alemán Johann Philip Reis inventó un instrumento que transmitía notas musicales, pero no era capaz de reproducir la voz humana. En 1877, tras haber descubierto que para transmitir la voz sólo se podía utilizar corriente continua, el inventor estadounidense de origen inglés Alexander Graham Bell construyó el primer teléfono capaz de transmitir y recibir voz humana con toda su calidad y su timbre.
Teléfono magnético de Bell
El conjunto básico del invento de Bell estaba formado por un emisor, un receptor y un único cable de conexión. El emisor y el receptor eran idénticos y contenían un diafragma metálico flexible y un imán con forma de herradura dentro de una bobina. Las ondas sonoras que incidían sobre el diafragma lo hacían vibrar dentro del campo del imán. Esta vibración inducía una corriente eléctrica en la bobina, que variaba según las vibraciones del diafragma. La corriente viajaba por el cable hasta el receptor, donde generaba fluctuaciones de la intensidad del campo magnético de éste, haciendo que su diafragma vibrase y reprodujese el sonido original.
En los receptores de los teléfonos modernos, el imán es plano como una moneda y el campo magnético que actúa sobre el diafragma de hierro es de mayor intensidad y homogeneidad. Los transmisores modernos llevan un diafragma muy fino montado debajo de un rejilla perforada. En el centro del diafragma hay un pequeño receptáculo relleno de gránulos de carbono. Las ondas sonoras que atraviesan la rejilla provocan un vaivén del receptáculo. En el movimiento descendente, los gránulos quedan compactados y producen un aumento de la corriente que circula por el transmisor.
Partes del aparato telefónico
El aparato telefónico consta de un transmisor, un receptor, un dispositivo marcador, una alarma acústica y un circuito supresor de efectos locales. Si se trata de un aparato de dos piezas, el transmisor y el receptor van montados en el auricular, el timbre se halla en la base y el elemento de marcado y el circuito supresor de efectos locales pueden estar en cualquiera de las dos partes, pero, por lo general, van juntos. Los teléfonos más complejos pueden llevar un micrófono y un altavoz en la pieza base, aparte del transmisor y el receptor en el auricular. En los teléfonos portátiles, el cable del auricular se sustituye por un enlace de radio entre el auricular y la base, aunque sigue teniendo un cable para la línea. Los teléfonos celulares suelen ser de una sola pieza, y sus componentes en miniatura permiten combinar la base y el auricular en un elemento manual que se comunica con una estación remota de radio. No precisan línea ni cables para el auricular.
Los teléfonos antiguos usaban un único dispositivo como transmisor y receptor. Sus componentes básicos eran un imán permanente con un cable enrollado que lo convertía en electroimán y un fino diafragma de tela y metal sometido a la fuerza de atracción del imán. La fuerza de la voz, en cuanto ondas de sonido, provocaban un movimiento del diafragma, que a su vez generaba una minúscula corriente alterna en los cables del electroimán. Estos equipos eran capaces de reproducir la voz, aunque tan débilmente que eran poco más que un juguete.
La invención del transmisor telefónico de carbono por Emile Berliner constituye la clave en la aparición del teléfono útil. Consta de unos gránulos de carbono colocados entre unas láminas metálicas denominadas electrodos, una de las cuales es el diafragma, que transmite variaciones de presión a dichos gránulos. Los electrodos conducen la electricidad que circula a través del carbono. Las variaciones de presión originan a su vez una variación de la resistencia eléctrica del carbono. A través de la línea se aplica una corriente continua a los electrodos, y la corriente continua resultante también varía. La fluctuación de dicha corriente a través del transmisor de carbono se traduce en una mayor potencia que la inherente a la onda sonora original. Este efecto se denomina amplificación, y tiene una importancia crucial. Un transmisor electromagnético sólo es capaz de convertir energía, y siempre producirá una energía eléctrica menor que la que contiene una onda sonora.
El equivalente eléctrico del imán permanente es una sustancia plástica denominada electreto. Al igual que un imán permanente produce un campo magnético permanente en el espacio, un electreto genera un campo eléctrico permanente en el espacio. Tal como un conductor eléctrico que se mueve en el seno de un campo magnético induce una corriente, el movimiento de un electrodo dentro de un campo eléctrico puede producir una modificación del voltaje entre un electrodo móvil y otro estacionario en la parte opuesta del electreto. Aunque este efecto se conocía de antiguo, fue sólo una curiosidad de laboratorio hasta la aparición de materiales capaces de conservar una carga electrostática durante años. Los transmisores telefónicos se basan actualmente en este efecto, en vez de en la resistencia sensible a la presión de los gránulos de carbono, ya que se consigue con un micrófono de electretos muy pequeño, ligero y económico. Los micrófonos de electretos se basan en los transistores para la amplificación requerida.
Dado que el transmisor de carbono no resulta práctico a la hora de convertir energía eléctrica en presión sonora, los teléfonos fueron evolucionando hacia receptores separados de los transmisores. Esta disposición permite colocar el transmisor cerca de los labios para recoger el máximo de energía sonora, y el receptor en el auricular, lo cual elimina los molestos ruidos de fondo. El receptor sigue siendo un imán permanente con un arrollamiento de hilo conductor, pero ahora lleva un diafragma de aluminio sujeto a una pieza metálica. Los detalles del diseño han experimentado enormes mejoras, pero el concepto original continúa permitiendo equipos sólidos y eficaces.
La alarma acústica de los teléfonos se suele denominar timbre, referencia al hecho de que durante la mayor parte de la historia de este equipo la función de alarma la proporcionaba un timbre eléctrico. La creación de un sustituto electrónico para el timbre, capaz de generar un sonido agradable a la vez que distintivo a un coste razonable, constituyó una tarea sorprendentemente ardua. Para muchas personas, el sonido del timbre sigue siendo preferible al de un zumbador electrónico. Sin embargo, dado que el timbre mecánico exige un cierto volumen físico para resultar eficaz, la tendencia hacia equipos cada vez menores impone el uso de alarmas electrónicas en la mayoría de los teléfonos. La sustitución progresiva del timbre permitirá asimismo cambiar, en un futuro próximo, el método actual de activación de la alarma —corriente alterna de 90 voltios (V) y 20 hercios (Hz) a la línea— por técnicas de voltajes menores, más compatibles con los teléfonos transistorizados. Algo similar se está produciendo con el esquema de marcado de los teléfonos.
El marcado telefónico ya ha sufrido toda una evolución a lo largo de su historia. Existen dos formas de marcado, el de pulso y el de multifrecuencia o tono.
El disco de marcado tiene un diseño mecánico muy ingenioso; consta de los números 1 al 9 seguidos del 0, colocados en círculo debajo de los agujeros de un disco móvil y perforado. Se coloca el dedo en el agujero correspondiente al número elegido y se hace girar el disco en el sentido de las agujas del reloj hasta alcanzar el tope y a continuación se suelta el disco. Un muelle obliga al disco a volver a su posición inicial y, al mismo tiempo que gira, abre un conmutador eléctrico tantas veces como gire el disco, para marcar el número elegido; en el caso del 0 se efectúan 10 aperturas, ya que es el último número del disco. El resultado es una serie de pulsos de llamada en la corriente eléctrica que circula entre el aparato telefónico y la centralita. Cada pulso tiene una amplitud igual al voltaje suministrado por la pila, generalmente 50 V, y dura unos 45 ms (milisegundos, milésimas de segundo). Los equipos de la centralita cuentan estos pulsos y determinan el número que se desea marcar.
Los pulsos eléctricos producidos por el disco giratorio resultan idóneos para el control de los equipos de conmutación paso-a-paso de las primeras centrales de conmutación automáticas. Sin embargo, el marcado mecánico constituye una de las fuentes principales de costes de mantenimiento, y el proceso de marcado por disco resulta lento, sobre todo en el caso de números largos. La disponibilidad de la amplificación barata y fiable que trajo el transistor aconsejó el diseño de un sistema de marcado basado en la transmisión de unos tonos de potencia bastante pequeña, en vez de los pulsos de marcado de gran potencia. Cada botón de un teclado de multifrecuencia controla el envío de una pareja de tonos. Se utiliza un esquema de codificación ‘2 de 7’ en el que el primer tono corresponde a la fila de una matriz normal de 12 botones y el segundo a la columna (4 filas más 3 columnas necesitan 7 tonos).
Actualmente, la mayoría de los teléfonos llevan botones en vez de disco de marcado. Dado que el sistema de tonos se comercializaba opcionalmente con un coste adicional, en las centrales se siguen recibiendo pulsos o multitonos. Como un usuario que compra un equipo puede disponer de una línea que no admite señales de multifrecuencia, los teléfonos de botones disponen generalmente de un conmutador que permite seleccionar el envío de pulsos o tonos.
Hay un elemento funcional importante del teléfono que resulta invisible para el usuario: el circuito supresor de efectos locales. Las personas controlan el tono de voz al hablar y ajustan en consonancia el volumen, fenómeno que se denomina ‘efecto local’. En los primeros teléfonos, el receptor y el transmisor del equipo iban conectados directamente entre sí y a la línea. Esto hacía que el usuario oyera su propia voz a través del receptor con mucha más intensidad que cuando no lo tenía pegado a la oreja. El sonido era mucho más fuerte que el normal porque el micrófono de carbono amplifica la energía sonora al mismo tiempo que la convierte de acústica a eléctrica. Además de resultar desagradable, esto obligaba al usuario a hablar con mayor suavidad, dificultando la escucha por parte del receptor.
El circuito supresor original contenía un transformador junto con otros componentes cuyas características dependían de los parámetros eléctricos de la línea telefónica. El receptor y el transmisor iban conectados a diferentes ‘puertos del circuito’ (en este caso, diferentes arrollamientos del transformador), no entre sí. El circuito supresor transfiere energía del transmisor a la línea (aunque parte también a otros componentes), sin que nada pase al receptor. Así se elimina la sensación de que uno grita en su propia oreja.
Circuitos y centrales
La llamada telefónica se inicia en la persona que levanta el auricular y espera el tono de llamada. Esto provoca el cierre de un conmutador eléctrico. El cierre de dicho conmutador activa el flujo de una corriente eléctrica por la línea de la persona que efectúa la llamada, entre la ubicación de ésta y el edificio que alberga la centralita automática, que forma parte del sistema de conmutación. Se trata de una corriente continua que no cambia su sentido de flujo, aun cuando pueda hacerlo su intensidad o amplitud. La central detecta dicha corriente y devuelve un tono de llamada, una combinación concreta de dos notas para que resulte perfectamente detectable, tanto por los equipos como por las personas.
Una vez escuchado el tono de llamada, la persona teclea una serie de números mediante los botones del auricular o del equipo de base. Esta secuencia es exclusiva de otro abonado, la persona a quien se llama. El equipo de conmutación de la central elimina el tono de llamada de la línea tras recibir el primer número y, una vez recibido el último, determina si el número con el que se quiere contactar pertenece a la misma central o a otra diferente. En el primer caso, se aplican una serie de intervalos de corriente de llamada a la línea. La corriente de llamada es corriente alterna de 20 Hz, que fluye en ambos sentidos 20 veces por segundo. El teléfono del usuario tiene una alarma acústica que responde a la corriente de llamada, normalmente mediante un sonido perceptible. Cuando se responde al teléfono levantando el auricular, comienza a circular una corriente continua por su línea que es detectada por la central. Ésta deja de aplicar la corriente de llamada y establece una conexión entre la persona que llama y la llamada, que es la que permite hablar.
En los primeros teléfonos, la corriente estaba generada por una batería. El circuito local tenía, además de la batería y el transmisor, un arrollamiento de transformador, que recibe el nombre de bobina de inducción; el otro arrollamiento, conectado a la línea, elevaba el voltaje de la onda sonora. Las conexiones entre teléfonos eran de tipo manual, a cargo de operadores que trabajaban en centralitas ubicadas en las oficinas centrales de conmutación.
A medida que se fueron desarrollando los sistemas telefónicos, las conexiones manuales empezaron a resultar demasiado lentas y laboriosas. Esto fue el detonante para la construcción de una serie de dispositivos mecánicos y electrónicos que permitiesen las conexiones automáticas (véase Electrónica). Los teléfonos modernos tienen un dispositivo electrónico que transmite una serie de pulsos sucesivos de corriente o varios tonos audibles correspondientes al número marcado. Los equipos electrónicos de la central de conmutación se encargan de traducir automáticamente la señal y de dirigir la llamada a su destino.
La tecnología de estado sólido ha permitido que estas centrales puedan procesar las llamadas a una velocidad de una millonésima de segundo, por lo que se pueden procesar simultáneamente grandes cantidades de llamadas. El circuito de entrada convierte, en primer lugar, la voz de quien llama a impulsos digitales. Estos impulsos se transmiten entonces a través de la red mediante sistemas de alta capacidad, que conectan las diferentes llamadas en base a operaciones matemáticas de conmutación computerizadas. Las instrucciones para el sistema se hallan almacenadas en la memoria de una computadora. El mantenimiento de los equipos se ha simplificado gracias a la duplicidad de los componentes. Cuando se produce algún fallo, entra automáticamente en funcionamiento una unidad de reserva para manejar las llamadas. Gracias a estas técnicas, el sistema puede efectuar llamadas rápidas, tanto locales como a larga distancia, determinando con rapidez la ruta más eficaz.
Actualmente, no existe en Estados Unidos ni en Inglaterra ningún teléfono atendido de forma manual. Todos los abonados son atendidos por centrales automáticas. En este tipo de central, las funciones de los operadores humanos las realizan los equipos de conmutación. Un relé de corriente de línea de un circuito ha sustituido el cuadro de conexión manual de luz de la centralita y un conmutador de cruce hace las funciones de los cables. Dado que ahora es cuando los ordenadores empiezan a estar en condiciones de entender comandos hablados, casi un siglo después de las primeras centrales automáticas, se sigue utilizando el visor para mostrar el número marcado. Los registros de entrada almacenan este número y luego lo transmiten a la central de conmutación, que a su vez activa el conmutador de cruce para completar la llamada o dirigirla a un conmutador de mayor nivel para el tratamiento pertinente.
Telefonía transoceánica
El servicio telefonía transoceánica se implantó comercialmente en 1927, pero el problema de la amplificación frenó el tendido de cables telefónicos hasta 1956, año en que entró en servicio el primer cable telefónico submarino transoceánico del mundo, que conectaba Terranova y Escocia.
Telefonía por onda portadora
Utilizando frecuencias superiores al rango de voz, que va desde los 4.000 hasta varios millones de ciclos por segundo, o hercios, se pueden transmitir simultáneamente hasta 13.200 llamadas telefónicas por una misma conducción. Las técnicas de telefonía por onda portadora también se utilizan para enviar mensajes telefónicos a través de las líneas normales de distribución sin interferir con el servicio ordinario. Debido al crecimiento de tamaño y complejidad de los sistemas, se utilizan los amplificadores de estado sólido, denominados repetidores, para amplificar los mensajes a intervalos regulares.
Cable coaxial
El cable coaxial, que apareció en 1936, utiliza una serie de conductores para soportar un gran número de circuitos. El cable coaxial moderno está fabricado con tubos de cobre de 0,95 cm de diámetro. Cada uno de ellos lleva, justo en el centro del tubo, un hilo fino de cobre sujeto con discos plásticos aislantes separados entre sí unos 2,5 cm. El tubo y el hilo tienen el mismo centro, es decir, son coaxiales. Los tubos de cobre protegen la señal transmitida de posibles interferencias eléctricas y evitan pérdidas de energía por radiación. Un cable, compuesto por 22 tubos coaxiales dispuestos en anillos encastrados en polietileno y plomo, puede transportar simultáneamente 132.000 mensajes.
Fibras ópticas
Los cables coaxiales se están sustituyendo progresivamente por fibras ópticas de vidrio. Los mensajes se codifican digitalmente en impulsos de luz y se transmiten a grandes distancias. Un cable de fibra puede tener hasta 50 pares de ellas, y cada par soporta hasta 4.000 circuitos de voz. El fundamento de la nueva tecnología de fibras ópticas, el láser, aprovecha la región visible del espectro electromagnético, donde las frecuencias son miles de veces superiores a las de la radio y, por consiguiente, pueden transportar un volumen mucho mayor de información. El diodo emisor de luz (LED), un dispositivo más sencillo, puede resultar adecuado para la mayoría de las funciones de transmisión.
Un cable de fibra óptica, el TAT 8, transporta más del doble de circuitos transatlánticos que los existentes en la década de 1980. Formando parte de un sistema que se extiende desde Nueva Jersey hasta Inglaterra y Francia, puede transmitir hasta 50.000 conversaciones a la vez. Este tipo de cables sirven también de canales para la transmisión a alta velocidad de datos informáticos, siendo más segura que la que proporcionan los satélites de comunicaciones (véase Comunicación vía satélite). Otro avance importante en las telecomunicaciones, el TAT 9, un cable de fibra con mucha mayor capacidad, entró en funcionamiento en 1992 y puede transmitir simultáneamente 75.000 llamadas.
Reemisor de microondas
En este método de transmisión, las ondas de radio que se hallan en la banda de frecuencias muy altas, y que se denominan microondas, se remiten de estación a estación. Dado que la transmisión de microondas exige un camino expedito entre estación emisora y receptora, la distancia media entre estaciones repetidoras es de unos 40 Km. Un canal de relé de microondas puede transmitir hasta 600 conversaciones telefónicas.
Telefonía por satélite
En 1969 se completó la primera red telefónica global en base a una serie de satélites en órbitas estacionarias a una distancia de la Tierra de 35.880 Km. Estos satélites van alimentados por células de energía solar. Las llamadas transmitidas desde una antena terrestre se amplifican y se retransmiten a estaciones terrestres remotas. La integración de los satélites y los equipos terrestres permite dirigir llamadas entre diferentes continentes con la misma facilidad que entre lugares muy próximos. Gracias a la digitalización de las transmisiones, los satélites de la serie global Intelsat pueden retransmitir simultáneamente hasta 33.000 llamadas, así como diferentes canales de televisión.
Un único satélite no serviría para realizar una llamada, por ejemplo, entre Nueva York y Hong Kong, pero dos sí. Incluso teniendo en cuenta el coste de un satélite, esta vía resulta más barata de instalar y mantener por canal que la ruta equivalente utilizando cables coaxiales tendidos por el fondo del mar. En consecuencia, para grandes distancias se utilizan en todo lo posible los enlaces por satélite.
Sin embargo, los satélites presentan una desventaja importante. Debido a la gran distancia hasta el satélite y la velocidad limitada de las ondas de radio, hay un retraso apreciable en las respuestas habladas. Por eso, muchas llamadas sólo utilizan el satélite en un sentido de la transmisión (por ejemplo, de Nueva York hacia San Francisco) y un enlace terrestre por microondas o cable coaxial en el otro sentido. Un enlace vía satélite para ambos sentidos resultaría irritante para dos personas conversando entre Nueva York y Hong Kong, ya que apenas podrían efectuar interrupciones, cosa muy frecuente en las conversaciones, y además se verían afectadas por el gran retraso (más de un segundo) en la respuesta de la otra persona.
La mayoría de las grandes ciudades están hoy enlazadas por una combinación de conexiones por microondas, cable coaxial, fibra óptica y satélites. La capacidad de cada uno de los sistemas depende de su antigüedad y el territorio cubierto (los cables submarinos están diseñados de forma muy conservadora y tienen menor capacidad que los cables de superficie), pero, en general, se pueden clasificar de la siguiente forma: la digitalización simple a través de un par paralelo proporciona decenas de circuitos por par; la coaxial permite cientos de circuitos por par y miles por cable; las microondas y los satélites dan miles de circuitos por enlace y la fibra óptica permite hasta decenas de miles de circuitos por fibra. La capacidad de cada tipo de sistema ha ido aumentando notablemente desde su aparición debido a la continua mejora de la ingeniería.
Teléfonos y radiodifusión
Los equipos de telefonía de larga distancia pueden transportar programas de radio y televisión a través de grandes distancias hasta muchas estaciones dispersas para su difusión simultánea. En algunos casos, la parte de audio de los programas de televisión se puede transmitir mediante circuitos de cables a frecuencias audio o a las frecuencias de portadora utilizadas para transmitir las conversaciones telefónicas. Las imágenes de televisión se transmiten por medio de cables coaxiales, microondas y circuitos de satélites.